On the Jacobson Radical of Skew Polynomial Extensions of Rings Satisfying a Polynomial Identity
نویسندگان
چکیده
منابع مشابه
extensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولOn annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملSkew Polynomial Extensions over Zip Rings
Recommended by Francois Goichot In this article, we study the relationship between left right zip property of R and skew polynomial extension over R, using the skew versions of Armendariz rings.
متن کاملOn constant products of elements in skew polynomial rings
Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...
متن کاملNilpotent Elements in Skew Polynomial Rings
Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2016
ISSN: 0092-7872,1532-4125
DOI: 10.1080/00927872.2014.990029